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The density of the field lines is approximately proportional to the

field strength. These plots are done by a Cyber 175 computer.
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Computations of Frequencies and Intrinsic Q Factors
of TEO~~ Modes of Dielectric Resonators

JERZY KRUPKA

,4ntract — The Rayleigh-Ritz method is described, which is used to

calculate the resonant frequencies and intrinsic Q factors due to dielectric
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Fig. 6. Transverse modaJ field distribution for a circular waveguide (first 30 The author is with the Instytut Technologii Elektronowej, Politechnika
modes), Warszawska u1. Koszykowa 75, 00-662 Warszawa, Poland.
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losses of quasi TEon~ modes of dielectric resonators. Electromagnetic

fields of an auxiliary post dielectric resonator are taken as an elec-

trodynamics basis for approximate solutions of this problem.

The method provides upper bounds for true resonant frequencies.

Numerical results are compared with previously published complementary

calculations. The influence of a dielectic substrate on resonant frequencies

and intrinsic Q values is demonstrated.

I. INTRODUCTION

Dielectric resonators have found many practicaf applications

due to tieir advantages of low cost, small size, and good tempera-

ture stability. They are particularly used in microwave integrated

circuits (MIC’S). A typical structure of an MIC dielectric reso-

nator is shown in Fig. 1. This paper describes the analysis of

nonradiating quasi-TEO, ~ modes of this structure. Many meth-

ods for the calculations of resonant frequencies of cylindrical

dielectric *resonators have been presented. Accurate calculations

by the separation of variables method are available only for a

dielectric post resonator. Analyses have been performed by B.

Ha.kki and P. Coleman [1] for nonradiating modes and by Y.

Kobayashi and S. Tanaka [2] for all modes. If the height of the

dielectric resonator is smaller than the distance between the

metallic plates, only approximate solutions are available. For this

case, models such as a magnetic wall model [3], [4], a dielectric

waveguide model [5], [6], and a mixed model [7] have been used.

However, the most accurate results have been obtained by the

Weinstein variational method [8] and the method of matching of

modal expansions between two complementary cylindrical re-

gions [9]. Interesting methods of analysis of dielectric resonators

in free space have been presented in [10]–[13]. Those methods are

useful for radiating modes when the distance between the metallic

plates is much greater than the height of the dielectric resonator.

In this paper, a method using the Rayleigl-Ritz formalism is

presented. The method is accurate in the sense that resonant

frequencies and intrinsic Q factors due to dielectric losses con-

verge to their exact values when the number of terms in the

expansion increases to infinity.

II. ANALYSIS

Analyses have been performed under the assumption that the

distance L between the conducting plates is smaller than half of

the wavelength in region II of Fig. 1. This is necessary because we

are looking for nonradiating modes only. According to the

Rayleigh-Ritz method, the electromagnetic field is expanded into

a series of basis functions. For our problem, the electrodynarnic

basis is formed as a set of functions being the solutions of an

auxiliary eigenvalue problem for a dielectric post resonator. The

post resonator has the height equal to L, the radius equal to a,

and real permittivity c~. It is evident that only nonradiating

TEOn~ modes of the post resonator participate in the expansion
of fields for the MIC dielectric resonator structure. They are
purely rotational modes so the system of linear equations ob-
tained by the Rayleigl– Ritz method takes the following form
[14], [15]:

( )A,~ – 8,1; a;H) = O, i,j’=1,2,. ... N (1)
u

where

{ a~~) } set of coefficients of the magnetic field expansion to be

determined,

N number of basis functions,

G complex angular frequency to be determined,

and

[A]

where

Fig. 1. Structure of the MIC dielectric resonator,

matrix with elements given by the following expression:

(2)

\

~,(P, z)= ~, ford< z<d+hando <p< a

1 for remaining part of the region

{~, } set of TEoH~ electric fields of the post resonator

{u, } set of TE o. ~, angular frequencies of the post resonator.

The electric fields corresponding to the TEO.~ modes of the post

dielectric resonator can be written as follows:

forp<a

[

()l?,~l(k~’). p)sin ‘z 7P
L

E, = J1(k$C). a)
B,

Kl(k$o). a)
K1(kj0)p)sin(~z)7q forp>a.

(3)

Because the following orthogonality relation holds:

(%( P, Z) Z,$)=?, (4)

where

(chforp<a
<b(P, z)= lforp>a

so

The sets {u,}, {k$’}}, {k$”)}

system of equations:

are found as roots of the following

ak~O)Ko ( k~o). a )
+ =0

Kl(k$oj. a)

~w 2 1/2
—

(–) ]L
(6)

where Jn ( x) denotes the Bessel functions of the first kind, Kn ( x)

is the modified Hankel functions of the second kind, and c the

light velocity.
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Fig. 2. Convergence of approximate values: (a) quasi-TEOll-mode frequency,
(b) quasi-TEO1l-mode wavelength of dielectric resonators having (a) h = 2.14
mm, u= 3.995 mm, L=ll,O mm. c. =36.2. d= 4.43 mm. c. =1 and ,
Cb= e,. (b) h =13.37 mm, a = 8,995 mm,
(, = 1, and <h = cr.

Substituting (3) in (2), one obtains

L-46.40 mm, c,= 34 ~1, d = O,

TABLE I

THE COMPUTED VALUES OF FREQUENCY OF THE QUASI-TEO1l

MODE VERSUS NUMBER N OF BASIS FUNCTIONS FOR THE

RESONATOR HAVING h = 2.14 mm, u = 3.995 mm, L =11 Omm,
c = 36.2, d = 4.43 mm, c, =1, AND Ch = i,

TABLE II
THE COMPUTED VALUES OF WAVELENGTH OF THE QuAsI-TEn,,

MODE VERSUS NUMBER N OF BASIS FuNcrIoNs’FoR THE ““

RESONATOR HAVING h = 13.37 mm, u = 8,995 mm, L = 46.40 mm,

<, = 34.61, d= O, <, =1, AND <b= c,

-i
Us

m Royle”wi ZI ref. [6]

0:05;364
0.082170
0.097165
0.102134
ly:r)~

0:103533
0.103644
0.103680
0.103707
0.103850

0.103943

0.103929

~ )sin(~zjdZ/)/@z/@,.k(0).p)K1(k~).p) dp. (;, –l)~dsin ~ z1

(7)

Solving the system of equations (1), one obtains the set of

eigenvalues {p, } i =1, 2,. . . , N and N corresponding eigenvectors

being the magnetic-field expansion coefficients for different

quasi-TEO,IM modes. Then the resonant frequencies J and the

intrinsic Q, values due to dielectric losses can be found as

follows:

a, =1/& (8)

fi=Re(&,)/2~ (9)

Q,= Re(4)/’2~~(i). (lo)

When dielectric losses are not too high, they do not affect the ~

values (this holds for practical cases). Then, according to general

features of the Rayleigh-Ritz method [16], the consecutive ex-

pansion of the matrix [ zt ] dimension yields decreasing sequences

of frequencies. It means that the method provides upper bounds

for the true resonant frequencies of the quasi-TEO~W,

Particularly for the lowest quasi-TEOl ~ mode, we have

f~l)>f{’)> .. >f~N)>f,

where fl is the true resonant frequency and f{ N) is

proximate value obtained with N basis functions.

modes.

(11)

the ap-
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TABLE III

THE COMPUTEDVALUESOF FREQUENCIESAND INTRINSIC Q
FACTORSFORDIELECTIUCMIC RESONATORSHAVING
c,= 36.2(1– j 10–4), L=ll.o mm, AND Cb = Re(?r)

I 1

Permittivity Dimensions TE modes TEmmedes
e. m; a

mm f;@ MHz Q;m] f,w MHz Q(:)

1 303-f.65UlIiz 2.14 3995 1.77 8015.2 5520 13528.0 6130

2 l-jO 234 3.99s t77 805&5 10320 13582.8 10327

3 303-jl.65x10Z416 3.m5 1.77 801O.4 9970 1163Z2 9616

III. COMPUTATIONS RESULTS

Computations of the quasi-TEoll-mode resonant frequency of

dielectric resonators having the same dimensions and permittivi-

ties as in [8] and [9] have been carried out first. The results are

presented in Fig. 2(a) and in Table I for the M. Jaworski et al.

resonator [8] and in Fig. 2(b) and in Table II for that of D.

Maystre et al. [9]. Fig. 2 shows the convergence of approximate

solutions versus the number of basis functions. The convergence

of the Rayleigh-Ritz method is worse than Weinstein’s and the

matching of modal expansions methods. On the other hand> the

Rayleigh-Ritz method leads to a simple eigenvalue problem

which cars be solved faster than the problem of the vanishing

determinant which must be solved when those methods are used.

For the Rayleigh– Ritz method, basis functions have been chosen

in the way described in [14] to get the fastest convergence of the

quasi-TEoll-mode frequency. Subscripts of the basis functions

are shown in Tables I and II. An important feature of the

Rayleig&Ritz method is that it provides upper bounds for true

resonant frequencies. Therefore, it is complementary to the

Weinstein method, which provides lower bounds for them.

For the proof of this see, e.g., [16]. It can be seen from Table II

and Fig. 2(b) that the method of matching of modal expansions

also provides lower bound for the quasi-TEOll-mode frequency.

Using two complementary methods, one can easily assess the

maximum error of calculations of resonant frequencies. It is

smaller than half of the difference between the values obtained

by these methods.

As the second example, the values of resonant frequencies and

intrinsic Q factors of full MIC dielectric resonators, shown in

Fig. 1, have been computed. The results are presented in Table

111. The first two lines in this table show the influence of the

substrate on frequencies and Q values. It is seen that the sub-

strate changes the frequencies less that by 1 percent (note that the

dielectric constant of the substrate is low). The influence of

substrate losses on the Q values is considerable. For a lossless

substrate, the intrinsic Q values are approximately equal to the

reciprocals of tan 8 of the dielectric resonator medium, while for

a lossy substrate, the Q values decrease 40 percent. The influence

of substrate losses is greater when the h/a ratio is smaller

(compare lines 1 and 3 from Table III).

IV. CONCLUSIONS

Accurate values of resonant frequencies and intrinsic Q factors

of MIC dielectric resonators could be found by the Rayleigl– Ritz

method using electromagnetic fields of a post dielectric resonator

as an electrodynamics basis. The method described in this paper

allows one to find nonradiating quasi-TEO. ~ modes. For 10W-1OSS

resonators, the method provides upper bounds for true resonant

frequencies. Application of the method requires the solutiop of
art eigenvalue problem for a complex matrix of not very &I
order. Upper and lower bounds of resonant frequencies can be
assessedif two complementary methods are used for calculations.
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Cross-Coupled Coaxial-Line/Rectangular-Waveguide

Junction

A. G. WILLIAMSON, SENIORMEMBER,IEEE

Abstract —The anafysis of a cross-coupled coaxial-line/rectangular-

waveguide junction having dissimilar coax@l fines is presented. An equiv-

alent circuit is deduced for the case where the TEIO mode is the only

propagating waveguide mode. Experimental/theoretical comparisons are

also reported which show the analysis to be very accurate.
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